- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Sheikh, Sanea (2)
-
Baldauf, Sandra L. (1)
-
Baldauf, Sandra_L (1)
-
Brown, Matthew_W (1)
-
Cavender, James C. (1)
-
Escalante, Ricardo (1)
-
Fu, Cheng-Jie (1)
-
Kawakami, Shin-ichi (1)
-
Lado, Carlos (1)
-
Landolt, John C. (1)
-
Nanjundiah, Vidyanand (1)
-
Queller, David C. (1)
-
Spiegel, Frederick W. (1)
-
Stephenson, Steven L. (1)
-
Strassmann, Joan E. (1)
-
Thulin, Mats (1)
-
Vadell, Eduardo M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Acrasids are amoebae with the capacity to form multicellular fruiting bodies in a process known as aggregative multicellularity (AGM). This makes acrasids the only known example of multicellularity among the earliest branches of eukaryotes (the former Excavata). Here, we report theAcrasis konagenome sequence plus transcriptomes from pre-, mid- and post-developmental stages. The genome is rich in novelty and genes with strong signatures of horizontal transfer, and multigene families encode nearly half of the amoeba’s predicted proteome. Development inA. konaappears molecularly simple relative to the AGM model,Dictyostelium discoideum. However, the acrasid also differs from the dictyostelid in that it does not appear to be starving during development. Instead, developingA. konaappears to be very metabolically active, does not induce autophagy and does not up-regulate its proteasomal genes. Together, these observations strongly suggest that starvation is not essential for AGM development. Nonetheless, development in the two amoebae appears to employ remarkably similar pathways for signaling, motility and, potentially, construction of an extracellular matrix surrounding the developing cell mass. Much of this similarity is also shared with animal development, suggesting that much of the basic tool kit for multicellular development arose early in eukaryote evolution.more » « less
-
Sheikh, Sanea; Thulin, Mats; Cavender, James C.; Escalante, Ricardo; Kawakami, Shin-ichi; Lado, Carlos; Landolt, John C.; Nanjundiah, Vidyanand; Queller, David C.; Strassmann, Joan E.; et al (, Protist)
An official website of the United States government
